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Abstract: Attention deficit hyperactivity disorder
(ADHD) and attention deficit disorder (ADD) are
commonly treated with stimulant medications such as
methylphenidate and amphetamines. These substances
are known to enhance concentration, alertness,
endurance, well-being, and self-esteem. However,
paradoxically, they have been shown to impair critical
cognitive processes related to learning. This article
reviews the current scientific literature on this paradox,
including findings from neurological, psychological,
and psychiatric research. It proposes a theoretical
framework explaining the neurobiological mechanisms
underlying these effects. A key study by Volkow et al.
(2008)1 demonstrated that methylphenidate reduces
glucose metabolism in brain regions involved in
cognitive processing. This reduction in metabolic
activity provides a potential explanation for the

paradoxical cognitive effects of stimulants.

J Neurol Psychol Res, an open access Journal

Paradoxically, they have been shown to impair
critical cognitive processes related to learning. This
article reviews the current scientific literature on this
paradox, including findings from neurological,
psychological, and psychiatric research. It proposes a
theoretical framework explaining the neurobiological

mechanisms underlying these effects.

This article reviews the current scientific
literature on this paradox, including findings from
neurological, psychological, and psychiatric research. It
proposes a theoretical framework explaining the

neurobiological mechanisms underlying these effects.

Method: This review aims to investigate the well-
known paradoxical effects of stimulants. Various search
engines were used to identify articles that could provide

insights into the mechanisms underlying these effects.
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Searches were conducted in PubMed, EMBASE,
PsycINFO, and Google Scholar, with non-sponsored
research being assigned greater scientific value than
sponsored studies, as previous research has documented
systematic bias in industry-sponsored trials. The
methodological quality of the studies was assessed with
a particular focus on the funding source, given that
sponsored studies are frequently associated with
overestimations of efficacy and underreporting of
adverse effects2-9. To account for this, the findings in
this review were categorized based on the funding
source, and methodological quality was evaluated using
criteria derived from the Cochrane Risk of Bias Tool 10
and Grading of Recommendations, Assessment,
Development and Evaluation (GRADE) [11]

The objective of this review is not to assess the
overall effectiveness or adverse effects of stimulants,
but rather to explore their paradoxical mechanisms of
action in order to identify potential explanations and
directions for future research. With this aim, articles
that had the potential to contribute to this understanding
were selected for inclusion. The authors' own
interpretations of their results are not taken into
account; instead, the results are used independently of
the proposed interpretations. Even with the use of these
tools, assessment can be challenging; however, if a
sponsored study presents a strongly contradictory
evaluation of efficacy or safety compared to

nonsponsored studies, it will be considered critical.

Results: Stimulants increase alertness, endurance, and
self-esteem; however, they also appear to impair
essential cognitive processes necessary for academic
and intellectual development in individuals with
ADHD/ADD as well as in those without these
diagnoses. The explanation may lie in the fact that these
substances enhance activity in monoamine networks
while reducing metabolism in other critical brain

networks.

The reduction in the impact of the habenular nuclei on
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monoamine systems may potentially affect certain
forms of learning, preventing them from functioning
properly when stimulants are used. However, it is likely
that the lack of learning should also be associated with

other systems in the brain as well.

Conclusion: The paradoxical effects of stimulants raise
significant questions about their role in cognitive
enhancement and learning. While these drugs increase
alertness, endurance, and self-esteem, they appear to
impair essential cognitive processes necessary for
academic and intellectual development. Neuroimaging
studies suggest that reduced metabolic activity and
disrupted functional connectivity in key learning
networks may underlies the lack of learning

improvements and enhancement of academic skills.

When the influence of the habenular nuclei on the
monoamine systems is reduced, it leads to a decrease in
learning  associated with negative experiences.
However, this only explains some of the learning
difficulties linked to the use of stimulants, and it does
not account for the significant findings reported by

Volkow and colleagues.

Future research should further investigate how
stimulants affect brain function and their long-term
consequences on cognitive development, as they seem
to increase the risk of impaired executive functions,
psychosis, and other neurological disorders—especially
in individuals dependent on these medications, but also
in those who receive them by prescription over

extended periods.

Introduction

Pharmacological treatment remains the predominant
approach for managing ADHD/ADD, despite official
guidelines advocating psychological interventions and
social or educational support as firstline treatments.
medications,

Various stimulant including

methylphenidate, amphetamine, and methamphetamine,
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function by increasing neurotransmitter activity—
primarily dopamine, norepinephrine, and serotonin—
via reuptake inhibition and enzymatic degradation

suppression [12-19].

In addition to the most classic forms of amphetamine
and methylphenidate, other substances used include
methamphetamine, methylphenidate hydrochloride,
lisdexamfetamine dimesylate, amphetamine sulfate,
mixed amphetamine salts, a combination of
dexmethylphenidate hydrochloride and
serdexmethylphenidate chloride, selective
norepinephrine  reuptake inhibitors (atomoxetine,
viloxazine), and alpha-2 adrenergic receptor agonists
(guanfacine hydrochloride, clonidine hydrochloride).
The substances most commonly used for treating

ADHD/ADD symptoms remain the original stimulant
forms: methylphenidate and amphetamine [20].

The substances later developed for the treatment of
ADHD/ADD are, to varying degrees, simple derivatives
of stimulants. They align to different extents with both
stimulants and antidepressants, all of which enhance
monoamine signaling—serotonin, dopamine, and
norepinephrine—in  different  proportions  and
combinations.
Amphetamine, developed in 188721, and
methylphenidate, synthesized in 194422-23, were
primarily used as treatments for depression xxx og
narcopleci until the 1960s24. Additionally, these
substances were employed as performance-enhancing
drugs in sports25-26 and academia. However, in the
1970s, they began to be used to improve concentration
and academic performance in children with
ADHD/ADD symptoms, with reference to Charles
Bradley’s early experiments from 1937. Bradley
administered  amphetamine to  children  with
ADHD/ADD symptoms, yet at the time, other

physicians opposed the use of narcotics in children.

This stance shifted in the 1970s, and stimulants are still
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considered the preferred first-line treatment for
ADHD/ADD in many parts of the world. These
substances have now been used for over five decades to
manage ADHD/ADD symptoms, with ongoing claims
that they remain the most effective and widely

prescribed pharmacological treatment today.

The rationale for using these substances has been based
on the assumption that they improve attention span,
reduce distractibility, enhance memory function,
minimize impulsivity, mitigate hyperactivity, and
improve social skills. Consequently, it has been
suggested that these effects should enhance learning
ability and lead to better academic performance 29-30.
However, even if these assumptions were correct, they
do not appear to be supported in practice. The results of
numerous studies are highly inconsistent and
contradictory—even after excluding studies funded by
pharmaceutical companies. There is no conclusive
evidence that stimulants have beneficial effects on key
outcome measures, particularly academic performance
[31].

It is rare to observe such conflicting findings in other
scientific disciplines as seen in psychiatry. This
discrepancy is partly due to the complexity of
psychiatric  research and the variability in
methodological approaches, which can contribute to
divergent results. The highly contradictory findings
must also be interpreted in light of the fact that
industry-sponsored studies often yield significantly
different conclusions than independent research.
However, when examining the effects of stimulants
specifically, these inconsistencies seem to stem from
other underlying factors that, upon closer analysis, may

provide a clearer understanding of their impact [32].
The Paradoxical Effects of ADHD/ADD Medication
Research on the effects of ADHD/ADD medication

reveals the following paradox: Why does ADHD/ADD

medication not improve academic performance, despite
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increasing wakefulness, endurance, attention, and

concentration?

Some of the researchers who have specifically
investigated this phenomenon are Claire Advokat and
Mindy Scheithauer from Louisiana State University
Baton Rouge, USA. In a 2013 article, they describe the
issue as follows: “Recent increases in attention deficit
hyperactivity disorder (ADHD) diagnoses, and the
escalation of stimulant prescriptions, has raised concern
about diversion and abuse of stimulants, as well as the
ethics of using these drugs as “cognitive enhancers.
“Such concern appears misplaced in the face of
substantial evidence that stimulant drugs do not
improve the academic performance of ADHD-
diagnosed students. Moreover, numerous studies have
found little or no Dbenefit of stimulants on
neuropsychological tests of ADHD-diagnosed as well as

normal, individuals”. [29]

In this study by Claire Advokat and Mindy Scheithauer
from the Department of Psychology at Louisiana State
University Baton Rouge, USA, the apparent paradox is
examined: why do stimulants enhance "attention" but
not academic performance in students diagnosed with
ADHD/ADD?

Advokat and Scheithauer were unable to identify a
definitive explanation for this phenomenon. However,
their findings indicated that stimulant use promotes
"risky behaviour" and increases susceptibility to
"environmental distractions." Despite this, they could

not pinpoint a clear underlying mechanism.

In an earlier study from 2011, Advokat and colleagues
investigated the relationship between ADHD/ADD
medication, study habits, and academic performance
among university students with an ADHD/ADD
diagnosis. The majority of students with ADHD/ADD
who used stimulant medication believed it helped them.
However, they also rated themselves as being worse

than other students at planning, completing
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assignments, and avoiding distractions. Although the
study habits of students with ADHD/ADD did not
significantly differ from those of the control group, their
average grades from both high school and university, as
well as their standardized test scores, were significantly
lower. They also withdrew from significantly more
courses compared to students who did not take
medication. Interestingly, preliminary data from the
study suggested that good study habits alone— without
stimulant medication—could compensate for the
performance gap among students with ADHD/ADD
[33].

Another study by Advokat and colleagues from 2008
further demonstrated that ADHD/ADD medication does
not significantly enhance cognitive abilities. The study
examined individuals diagnosed with ADHD/ADD who
were using stimulants for academic purposes and
compared them with individuals who also took similar
stimulants but did not have an ADHD/ADD
diagnosis34. The results showed that the group with
ADHD/ADD achieved significantly lower grades than
those taking the same stimulants without an
ADHD/ADD diagnosis.

This finding suggests that ADHD/ADD medication
does not mitigate the cognitive deficits associated with
ADHD/ADD symptoms compared to individuals
without the diagnosis. These results are also consistent
with the well-known studies conducted by Judith
Rapoport and colleagues in 1978 and 2002, which
concluded that stimulants do not have a differential
effect on individuals with ADHD/ADD symptoms
compared to those without [35-39].

Furthermore, these studies dismissed the hypothesis that
ADHD/ADD symptoms are linked to low dopamine

levels.
Nevertheless, some researchers continue to argue for a

connection between dopamine and ADHD/ADD

symptoms. However, their ability to do so relies on the
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fact that while stimulant medication produces
measurable effects, these effects do not ultimately result

in meaningful cognitive improvements.

Stimulants enhance various brain functions associated
with increased attention, wakefulness, activity, self-
confidence, mood/euphoria, and social interaction,
particularly when used in low doses over a short period.
This effect occurs primarily because stimulants increase
dopamine signalling, which plays a central role in these

functions.

However, the benefits of stimulant medication may not
be as significant as many pharmaceuticalsponsored
studies suggest. This is evident in a study by Schein et
al., which examined ADHD/ADD and the side effects
of ADHD/ADD medication among adults in the United
States. Their findings concluded: “Symptoms associated
with ADHD and treatment-related side effects are
common and have a significant negative impact on
quality of life, as well as reducing patients’ likelihood

of gaining employment” [40].

This is despite the fact that stimulants initially enhance
concentration, activity levels, endurance, and mood.
Most studies that highlight such positive effects
primarily focus on the short-term impact of these drugs.
Nevertheless, there is no doubt that substances such as
amphetamine and methylphenidate increase attention,
activity, wakefulness, endurance, and self-esteem while
fostering a subjective sense of improved social
functioning, as demonstrated in a study by Harpin et
al.41 Individuals who take stimulants like amphetamine
and methylphenidate tend to overestimate their
performance. Additionally, research suggests that these
substances can increase talkativeness42, which may be
indicative of euphoria and/or a greater sense of ease in

social situations.
In another study, researchers investigated the acute

administration of varying doses of methylphenidate (10

mg, 20 mg, 40 mg, and placebo) on a broad range of
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cognitive functions in healthy young individuals. Their
findings led to the following conclusion:

"According to recent literature, stimulants such as
methylphenidate enhance performance when cognitive
processes are functioning below an optimal level, which
was not the case for the participants in the present
study. We propose that the impression that
methylphenidate improves cognitive performance in
healthy young individuals—and thereby justifies its
use—may be due to enhancements in subjective well-

being induced by the drug. [43].

Ved langere tids pavirkning, s& viser undersggelser at
brugerne bliver darligere pa en lang rakke omrader,
fastholdelse af

opmerksomhed, social opmarksomhed, sociale

som f.eks. hukommelse,

ferdigheder, empati m.m. [44-47].

The lack of actual cognitive benefits is further
supported by evidence showing that individuals who
use these stimulants struggle to integrate into the
workforce or achieve a satisfactory social life, despite
extensive medication with relatively high doses of these
substances. Furthermore, research indicates that
stimulant drugs can impair cognitive abilities and
emotional responses relatively quickly. When taken in
excessive amounts or at higher doses, these effects can

escalate to the point of psychosis [48-77].

An increased risk of psychotic disorders and the
potential development of schizophrenia and psychosis
have also been linked to long-term stimulant use

[50,57,78-84].

A study examining vulnerable adolescents and children
of parents with psychiatric disorders found that 62.5%
of young individuals who had been treated with
stimulants exhibited psychotic symptoms, compared to
27.4% of vulnerable adolescents who had never taken

stimulants [81].

Individuals who are already predisposed to psychosis
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face an increased risk of 30-40% of developing
psychotic symptoms when using stimulants82-83. A
similar pattern has been observed in individuals
diagnosed with bipolar disorder, further emphasizing
the potential risks associated with long-term stimulant
use85. Man ser da ogsa forandringer i nogle omrader af

hjernen, som kan ligne skizofreni [44].

Overall, it can be concluded that stimulants have a
significant impact on executive functions, enhancing
some cognitive processes while impairing others. These
substances increase attention processes, wakefulness,
and alertness; however, paradoxically, they also lead to

poorer learning outcomes.

A research team led by Jurjen van der Schans and
colleagues from the University of Groningen,
Netherlands, investigated children who  used
methylphenidate compared to those who had never
taken the drug. Their study linked data from a pharmacy
prescription database with standardized test results from
primary school students in the Netherlands and reached

the following conclusion:

"Our study shows that children who use
methylphenidate still perform worse in school
compared to their peers. Our findings also suggest that
an earlier initiation of methylphenidate treatment is
associated with lower academic performance compared

to children who start treatment later." [31]

A study has shown an improvement in academic skills
among children with ADHD/ADD who received
stimulant  treatment, compared to those with
ADHD/ADD who did not receive such treatment.
However, they never reached the same level as their
peers without ADHD/ADD. Notably, this study was
conducted by researchers who received funding from

the pharmaceutical industry [85].

On the other hand, there is no doubt that stimulants

enhance self-esteem, attention, and endurance while
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also influencing thinking patterns and emotional states
in complex ways that are not yet fully understood.
These substances exhibit seemingly contradictory and
paradoxical effects—some beneficial, others harmful.

Further research indicates that stimulants can cause
significant damage to the brain, leading to cognitive
decline and stimulant use has been linked to neuronal
death in dopamine-producing cells, and the risk of
developing Parkinson’s disease increases by 200-850%
at a young age [86-91]. Additionally, the risk of
dementia rises by 400% [92]. This strongly suggests
that stimulants have a profound effect on cognitive
function and that excessive or prolonged use can be

highly detrimental to executive functions.

These various effects may influence how stimulants
impair cognitive functions over time and may
contribute to a reduction in learning ability.
Paradoxically, however, they may also enhance
concentration, endurance, and self-esteem. Yet,
stimulants reduce learning ability from the very
beginning of treatment. The effect that creates the
paradoxical nature of stimulants from the moment the
substance is first time consumed will be examined

further in the following sections.

Neurological Mechanisms Underlying the Paradox

A particularly important study sheds light on why
stimulants increase concentration, activity levels,
endurance, and self-esteem, yet simultaneously impair

critical cognitive processes involved in learning.

In this study by Volkow and colleagues, Positron
Emission Tomography (PET) scanning was utilized to
visualize glucose consumption in the brain. PET
scanning is an advanced neuroimaging technique based
on measuring radioactive decay from a tracer, allowing
for detailed imaging of metabolic activity. Tomography,
in general, refers to any imaging method that produces
cross-sectional layers of an object using penetrating

radiation or waves.
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Statistical Parametric Mapping (SPM) was applied to
data from various brain imaging techniques, including
fMRI (functional Magnetic Resonance Imaging), PET,
and EEG/MEG
(Electroencephalography/Magnetoencephalography), to
determine regions with the highest metabolic activity.
Statistical tests were conducted on each voxel (a three-
dimensional pixel in the brain imaging data) to assess
whether significant changes in neural activity occurred
between different conditions, such as a cognitive task
versus a control state. Brain regions with statistically
significant differences were then highlighted and

visualized as color-coded areas on brain maps.

The study found that while methylphenidate increased
concentration, it did not improve task performance
compared to individuals who had not taken the drug.
However, Volkow and colleagues made a surprising

conclusion:

"Since the brain required approximately 50% less
glucose to perform the task at the same level, this
provides evidence that one of the mechanisms behind
methylphenidate's effect is the ability to focus neural

activation and make the brain more efficient." [1]

At rest, the brain's relative activity level was the same
regardless of whether methylphenidate had been
administered or not. The study shows that when
performing a task after taking methylphenidate, brain
activity increased by 11% and 22%, whereas without
the drug, brain activity increased by 22%. The results of

task performance remained at a relatively similar level.

Volkow and colleagues speculated that stimulants might
reduce "neural noise", thereby enhancing cognitive
efficiency in the adults they studied. However, the
notion that 50% of the increased neural activity should
be attributed to "neural noise" seems implausible.
Instead, a more reasonable interpretation would be that
stimulants suppress learning-related neural systems,

rather than merely reducing noise.
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This consideration is only valid if one examines the
results in isolation. However, when the findings are
contextualized with the well-documented fact that
stimulants do not significantly enhance learning, the
interpretation shifts in a different direction, making the
results more meaningful. Volkow and colleagues also
provide a more plausible explanation, suggesting that
methylphenidate reduces the activity of what is known
as the "default network" (DN).

The default network (DN) is active during unfocused
mental states, such as relaxation, reflection, and
metacognition, and is also associated with daydreaming
and other internally directed cognitive processes.
Additionally, DN plays a critical role in long-term

memory and the integration of new information.

DN can be divided into core regions and two distinct
subsystems. The core regions include the anterior
medial prefrontal cortex, posterior cingulate cortex,
bilateral angular gyrus, lateral temporal lobes, and
superior frontal gyrus. The dorsomedial subsystem
consists of the dorsal medial prefrontal cortex,
temporoparietal junction, lateral temporal cortex,

temporal pole, and inferior frontal gyrus [93].

Recent studies have shown that brain regions within DN
remain active during task performance when cognition
and behavior benefit from memory processes. For
instance, DN activation is observed when decisions rely
on previous trial information [94-96], when task-
relevant stimuli are supported by long-term memory
[97], when participants retrieve task context from
memory, or when they encode rules upon which their

actions are based [98].

Chandra Sripada and colleagues from the University of
Michigan provide additional insight into why
methylphenidate enhances attention while
simultaneously suppressing certain neural systems.
Their findings, derived from a support vector machine

analysis, indicate that methylphenidate reduces

Volume 6 ¢ Issue 1 » 2025
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connectivity between the visual and somatomotor
networks while also diminishing DN activity during
task execution. The researchers suggest that this
suppression may be a key mechanism behind
methylphenidate's ability to enhance attention during
cognitive tasks, but it also likely impairs other neural

systems involved in learning [99].

The results are in good agreement with previous
research, where no significant improvements in learning
have been observed, and where these substances may

even reduce learning ability over time.

Conversely, it is relatively evident that stimulants
increase  wakefulness, concentration, endurance,
euphoria, and self-esteem. The increased focus and
attention that arise when taking methylphenidate or
other stimulants may potentially be explained by an
effect that suppresses competing networks, allowing
energy to be utilized more efficiently. Volkow and
colleagues have suggested that inhibition of the default
network (DN) could be a contributing factorl, and this

hypothesis has been pursued by other researchers.

Chandra Sripada and colleagues from the University of
Michigan provide further insight into why
methylphenidate enhances attention while
simultaneously suppressing certain neural systems.
Their findings, derived from a support vector machine
analysis, indicate that methylphenidate reduces
connectivity between the visual and somatomotor
networks, while also decreasing activity in the default
network (DN) during task performance. The researchers
suggest that this suppression may be a key mechanism
behind methylphenidate’s ability to enhance attention
during cognitive tasks 93, but it may also likely impair
other neural systems involved in learning. This aspect

was not addressed in their study. Consequently, it would
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be pertinent to investigate the various systems that may

be suppressed by stimulants.

In addition to DN, other networks that warrant further
investigation include: central executive network (CEN),
cognitive control network (CCN), dorsal attention
network (DAN), executive control network (ECN),
executive network (EN), frontoparietal network (FPN),
working memory network (WMN), task positive
network (TPN), ventral attention network (VAN),
Salience Network, Procedural Memory System (PMS)
and Declarative Memory System (DMS).

Understanding which neural systems are downregulated
during stimulant use in learning and problem-solving
contexts is crucial for both optimizing ADHD/ADD
treatment strategies and assessing the impact of
stimulant use among individuals with substance use
disorders, as the inhibition of these networks may
contribute to addiction-related mechanisms and other
mechanisms where one may become overly motivated,

hyper-focused, and prone to taking excessive risks.

In addition to DN, other networks that warrant further
investigation include: central executive network (CEN),
cognitive control network (CCN), dorsal attention
network (DAN), executive control network (ECN),
executive network (EN), frontoparietal network (FPN),
working memory network (WMN), task positive
network (TPN), ventral attention network (VAN),
Salience Network, Procedural Memory System (PMS)
and Declarative Memory System (DMS).

The networks associated with the two small habenular
nuclei are specific networks that are affected by

stimulants both directly and indirectly.

The habenular nuclei, a structure in the midbrain, can
be referred to as our "depression" or "demotivation
center." Its purpose is to suppress processes related to
motivation under negative circumstances, in situations

where the effort of a behavior does not seem to yield a
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reward that makes it worthwhile, or during states of

surrender—when nothing can be done.

In the midbrain, or diencephalon, lies the epithalamus.
The epithalamus constitutes a small part of the
diencephalon and consists of three smaller structures:
the pineal gland, the habenular nuclei, and the stria
medullaris thalami, along with the third ventricle. Most
of the epithalamus is located near the caudal and dorsal
parts of the thalamus. It is believed that the habenula
has evolved in close interaction with the pineal gland
[100-101]. The stria medullaris receives and transmits
input to the habenular nuclei, while the fasciculus
retroflexus serves as the output pathway from the
habenular nuclei, consisting of axons from the habenula
[102].

This larger complex plays a central role in our
experience of demotivation, reduced energy, sadness,
heaviness, and surrender. On the other hand, it is also
associated with fatigue and sleep, where the pineal
gland is the dominant structure, while the habenula is

central to the experience of demotivation, surrender,

giving up.

The habenular nuclei consist of two nuclei [103]: the
lateral habenular nuclei and the medial habenular
nuclei. The lateral habenular nuclei receive input from
the basal ganglia, limbic areas, and cognitive regions,
encompassing motor, emotional [104-107], and

cognitive input [108].

The habenular nuclei are involved in learning and
memory related to unpleasant experiences, which serve
to demotivate us [104,109]. This structure is also
activated during decision-making under negative
influences and stress [110]. Additionally, the habenula
is highly active when we make mistakes and process
those errors104. Damage to the habenula impacts
cognitive processes and has consequences for learning,
memory, and attention abilities [104, 111]. Furthermore,

damage to the habenula also leads to sleep disturbances
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[112].

When the habenula is activated, it suppresses the

monoamine systems, including dopamine,
norepinephrine, serotonin, and histamine [113-117].
This suppression lowers motivation and increases
uncertainty, and strong activation results in fatigue,
heaviness, and a sense of surrender. This system is
crucial for evaluating ambiguous, uncertain, and
potentially dangerous situations. It is also essential for
assessing what is worthwhile or wise to pursue. The
habenula plays a significant role in reflection related to
uncertainty, ambiguity, self-assessment, and other

metacognitive processes.

These processes are particularly important in situations
that are ambiguous or in other situations where we need
to experience uncertainty. It is likely that the increased
release of monoamines in the brain when stimulants are
used counteracts the impact of the habenula on
conscious processes. This, in turn, may enhance
motivation, energy levels, and self-confidence, thereby
reducing uncertainty and doubt, but it can also have a

negative effect on learning.

Most individuals who take stimulants report thinking
less, having fewer distracting thoughts, being more
focused, feeling less uncertain, and having greater
confidence in their decisions. These effects are likely
due to the habenula's inability to suppress the
monoamine systems when the structure is stimulated.
However, this does not explain the findings of Volkow
and colleagues, who observed a 50% reduction in
glucose consumption. Therefore, it is highly likely that

other systems are also being suppressed.

Stimulants also have a direct impact on neurons in the
habenula. It has been demonstrated that continuously
administered amphetamine has a neurotoxic effect on
dopamine terminals in the caudate and that both
amphetamine and cocaine, when administered

continuously over a period of 3-5 days, induced a
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highly specific pattern of axonal degeneration extending
from the lateral habenular nucleus along the fasciculus

retroflexus toward the ventral tegmental area [118].

The effect of chronic amphetamine administration is
also observed in relation to the expression of the D2
dopamine receptor, which was immunohistochemically
analyzed in the caudate-putamen and the lateral
habenular nucleus. A significant reduction in the
number of immunopositive neural cells was observed in
both regions, suggesting that chronically administered
amphetamine alters the function of the D2 dopamine
receptor in the dorsal diencephalic conduction system.
This may be involved in the development of
schizophrenia, stereotypic behavior, and neurological
disorders in individuals who consume psychostimulants

on a daily basis [119].

White matter is also reduced in the connections between
the habenula and the prefrontal cortex [120], which is
highly significant for the functional capacity of

individuals who continuously use stimulants.

These direct effects can have profound consequences
for human learning ability and may result in lasting
damage, as well as maladaptive behaviour, where the

ability to reconsider one's thoughts is impaired.

Conclusion

The paradoxical effects of ADHD/ADD medication
raise significant questions about their role in cognitive
enhancement and learning. While these drugs increase
alertness, endurance, and selfesteem, they appear to
impair essential cognitive processes necessary for
academic and intellectual development. Neuroimaging
studies suggest that reduced metabolic activity and
disrupted functional connectivity in key learning
networks may underlie the lack of learning

improvements and enhancement of academic skills.
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The reduction in the impact of the habenular nuclei on
monoamine systems may potentially affect certain
forms of learning, preventing them from functioning
properly when stimulants are used. However, it is likely
that the lack of learning should also be associated with

other systems in the brain.

Future research should further investigate how
stimulants affect brain function and their long-term
consequences on cognitive development, as they seem
to increase the risk of impaired executive functions,
psychosis, and other neurological disorders—especially
in individuals dependent on these medications, but also
in those who receive them by prescription over
extended periods. The use of stimulants as a treatment
should be approached with a high degree of restriction

and caution.
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