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Abstract: Attention deficit hyperactivity disorder 

(ADHD) and attention deficit disorder (ADD) are 

commonly treated with stimulant medications such as 

methylphenidate and amphetamines. These substances 

are known to enhance concentration, alertness, 

endurance, well-being, and self-esteem. However, 

paradoxically, they have been shown to impair critical 

cognitive processes related to learning. This article 

reviews the current scientific literature on this paradox, 

including findings from neurological, psychological, 

and psychiatric research. It proposes a theoretical 

framework explaining the neurobiological mechanisms 

underlying these effects. A key study by Volkow et al. 

(2008)1 demonstrated that methylphenidate reduces 

glucose metabolism in brain regions involved in 

cognitive processing. This reduction in metabolic 

activity provides a potential explanation for the 

paradoxical cognitive effects of stimulants. 

Paradoxically, they have been shown to impair 

critical cognitive processes related to learning. This 

article reviews the current scientific literature on this 

paradox, including findings from neurological, 

psychological, and psychiatric research. It proposes a 

theoretical framework explaining the neurobiological 

mechanisms underlying these effects. 

 

This article reviews the current scientific 

literature on this paradox, including findings from 

neurological, psychological, and psychiatric research. It 

proposes a theoretical framework explaining the 

neurobiological mechanisms underlying these effects.   

 

Method: This review aims to investigate the well-

known paradoxical effects of stimulants. Various search 

engines were used to identify articles that could provide 

insights into the mechanisms underlying these effects. 
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Introduction   

Searches were conducted in PubMed, EMBASE, 

PsycINFO, and Google Scholar, with non-sponsored 

research being assigned greater scientific value than 

sponsored studies, as previous research has documented 

systematic bias in industry-sponsored trials. The 

methodological quality of the studies was assessed with 

a particular focus on the funding source, given that 

sponsored studies are frequently associated with 

overestimations of efficacy and underreporting of 

adverse effects2-9. To account for this, the findings in 

this review were categorized based on the funding 

source, and methodological quality was evaluated using 

criteria derived from the Cochrane Risk of Bias Tool 10 

and Grading of Recommendations, Assessment, 

Development and Evaluation (GRADE) [11] 

 

The objective of this review is not to assess the 

overall effectiveness or adverse effects of stimulants, 

but rather to explore their paradoxical mechanisms of 

action in order to identify potential explanations and 

directions for future research. With this aim, articles 

that had the potential to contribute to this understanding 

were selected for inclusion. The authors' own 

interpretations of their results are not taken into 

account; instead, the results are used independently of 

the proposed interpretations. Even with the use of these 

tools, assessment can be challenging; however, if a 

sponsored study presents a strongly contradictory 

evaluation of efficacy or safety compared to 

nonsponsored studies, it will be considered critical. 

 

Results: Stimulants increase alertness, endurance, and 

self-esteem; however, they also appear to impair 

essential cognitive processes necessary for academic 

and intellectual development in individuals with 

ADHD/ADD as well as in those without these 

diagnoses. The explanation may lie in the fact that these 

substances enhance activity in monoamine networks 

while reducing metabolism in other critical brain 

networks. 

 

The reduction in the impact of the habenular nuclei on 

monoamine systems may potentially affect certain 

forms of learning, preventing them from functioning 

properly when stimulants are used. However, it is likely 

that the lack of learning should also be associated with 

other systems in the brain as well. 

 

Conclusion: The paradoxical effects of stimulants raise 

significant questions about their role in cognitive 

enhancement and learning. While these drugs increase 

alertness, endurance, and self-esteem, they appear to 

impair essential cognitive processes necessary for 

academic and intellectual development. Neuroimaging 

studies suggest that reduced metabolic activity and 

disrupted functional connectivity in key learning 

networks may underlies the lack of learning 

improvements and enhancement of academic skills.   

 

When the influence of the habenular nuclei on the 

monoamine systems is reduced, it leads to a decrease in 

learning associated with negative experiences. 

However, this only explains some of the learning 

difficulties linked to the use of stimulants, and it does 

not account for the significant findings reported by 

Volkow and colleagues. 

 

Future research should further investigate how 

stimulants affect brain function and their long-term 

consequences on cognitive development, as they seem 

to increase the risk of impaired executive functions, 

psychosis, and other neurological disorders—especially 

in individuals dependent on these medications, but also 

in those who receive them by prescription over 

extended periods. 

 

 

 

Pharmacological treatment remains the predominant 

approach for managing ADHD/ADD, despite official 

guidelines advocating psychological interventions and 

social or educational support as firstline treatments. 

Various stimulant medications, including 

methylphenidate, amphetamine, and methamphetamine, 
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function by increasing neurotransmitter activity—

primarily dopamine, norepinephrine, and serotonin—

via reuptake inhibition and enzymatic degradation 

suppression [12-19]. 

 

In addition to the most classic forms of amphetamine 

and methylphenidate, other substances used include 

methamphetamine, methylphenidate hydrochloride, 

lisdexamfetamine dimesylate, amphetamine sulfate, 

mixed amphetamine salts, a combination of 

dexmethylphenidate hydrochloride and 

serdexmethylphenidate chloride, selective 

norepinephrine reuptake inhibitors (atomoxetine, 

viloxazine), and alpha-2 adrenergic receptor agonists 

(guanfacine hydrochloride, clonidine hydrochloride). 

The substances most commonly used for treating 

ADHD/ADD symptoms remain the original stimulant 

forms: methylphenidate and amphetamine [20]. 

 

The substances later developed for the treatment of 

ADHD/ADD are, to varying degrees, simple derivatives 

of stimulants. They align to different extents with both 

stimulants and antidepressants, all of which enhance 

monoamine signaling—serotonin, dopamine, and 

norepinephrine—in different proportions and 

combinations. 

 

Amphetamine, developed in 188721, and 

methylphenidate, synthesized in 194422-23, were 

primarily used as treatments for depression xxx og 

narcopleci until the 1960s24. Additionally, these 

substances were employed as performance-enhancing 

drugs in sports25-26 and academia. However, in the 

1970s, they began to be used to improve concentration 

and academic performance in children with 

ADHD/ADD symptoms, with reference to Charles 

Bradley’s early experiments from 1937. Bradley 

administered amphetamine to children with 

ADHD/ADD symptoms, yet at the time, other 

physicians opposed the use of narcotics in children. 

 

This stance shifted in the 1970s, and stimulants are still 

considered the preferred first-line treatment for 

ADHD/ADD in many parts of the world. These 

substances have now been used for over five decades to 

manage ADHD/ADD symptoms, with ongoing claims 

that they remain the most effective and widely 

prescribed pharmacological treatment today. 

 

The rationale for using these substances has been based 

on the assumption that they improve attention span, 

reduce distractibility, enhance memory function, 

minimize impulsivity, mitigate hyperactivity, and 

improve social skills. Consequently, it has been 

suggested that these effects should enhance learning 

ability and lead to better academic performance 29-30. 

However, even if these assumptions were correct, they 

do not appear to be supported in practice. The results of 

numerous studies are highly inconsistent and 

contradictory—even after excluding studies funded by 

pharmaceutical companies. There is no conclusive 

evidence that stimulants have beneficial effects on key 

outcome measures, particularly academic performance 

[31].   

 

It is rare to observe such conflicting findings in other 

scientific disciplines as seen in psychiatry. This 

discrepancy is partly due to the complexity of 

psychiatric research and the variability in 

methodological approaches, which can contribute to 

divergent results. The highly contradictory findings 

must also be interpreted in light of the fact that 

industry-sponsored studies often yield significantly 

different conclusions than independent research. 

However, when examining the effects of stimulants 

specifically, these inconsistencies seem to stem from 

other underlying factors that, upon closer analysis, may 

provide a clearer understanding of their impact [32].  

 

The Paradoxical Effects of ADHD/ADD Medication 

 

Research on the effects of ADHD/ADD medication 

reveals the following paradox: Why does ADHD/ADD 

medication not improve academic performance, despite 
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increasing wakefulness, endurance, attention, and 

concentration?    

 

Some of the researchers who have specifically 

investigated this phenomenon are Claire Advokat and 

Mindy Scheithauer from Louisiana State University 

Baton Rouge, USA. In a 2013 article, they describe the 

issue as follows: “Recent increases in attention deficit 

hyperactivity disorder (ADHD) diagnoses, and the 

escalation of stimulant prescriptions, has raised concern 

about diversion and abuse of stimulants, as well as the 

ethics of using these drugs as “cognitive enhancers. 

“Such concern appears misplaced in the face of 

substantial evidence that stimulant drugs do not 

improve the academic performance of ADHD-

diagnosed students. Moreover, numerous studies have 

found little or no benefit of stimulants on 

neuropsychological tests of ADHD-diagnosed as well as 

normal, individuals”. [29]   

 

In this study by Claire Advokat and Mindy Scheithauer 

from the Department of Psychology at Louisiana State 

University Baton Rouge, USA, the apparent paradox is 

examined: why do stimulants enhance "attention" but 

not academic performance in students diagnosed with 

ADHD/ADD? 

 

Advokat and Scheithauer were unable to identify a 

definitive explanation for this phenomenon. However, 

their findings indicated that stimulant use promotes 

"risky behaviour" and increases susceptibility to 

"environmental distractions." Despite this, they could 

not pinpoint a clear underlying mechanism. 

 

In an earlier study from 2011, Advokat and colleagues 

investigated the relationship between ADHD/ADD 

medication, study habits, and academic performance 

among university students with an ADHD/ADD 

diagnosis. The majority of students with ADHD/ADD 

who used stimulant medication believed it helped them. 

However, they also rated themselves as being worse 

than other students at planning, completing 

assignments, and avoiding distractions. Although the 

study habits of students with ADHD/ADD did not 

significantly differ from those of the control group, their 

average grades from both high school and university, as 

well as their standardized test scores, were significantly 

lower. They also withdrew from significantly more 

courses compared to students who did not take 

medication. Interestingly, preliminary data from the 

study suggested that good study habits alone— without 

stimulant medication—could compensate for the 

performance gap among students with ADHD/ADD 

[33]. 

 

Another study by Advokat and colleagues from 2008 

further demonstrated that ADHD/ADD medication does 

not significantly enhance cognitive abilities. The study 

examined individuals diagnosed with ADHD/ADD who 

were using stimulants for academic purposes and 

compared them with individuals who also took similar 

stimulants but did not have an ADHD/ADD 

diagnosis34. The results showed that the group with 

ADHD/ADD achieved significantly lower grades than 

those taking the same stimulants without an 

ADHD/ADD diagnosis. 

 

This finding suggests that ADHD/ADD medication 

does not mitigate the cognitive deficits associated with 

ADHD/ADD symptoms compared to individuals 

without the diagnosis. These results are also consistent 

with the well-known studies conducted by Judith 

Rapoport and colleagues in 1978 and 2002, which 

concluded that stimulants do not have a differential 

effect on individuals with ADHD/ADD symptoms 

compared to those without [35-39].   

 

Furthermore, these studies dismissed the hypothesis that 

ADHD/ADD symptoms are linked to low dopamine 

levels. 

 

Nevertheless, some researchers continue to argue for a 

connection between dopamine and ADHD/ADD 

symptoms. However, their ability to do so relies on the 
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fact that while stimulant medication produces 

measurable effects, these effects do not ultimately result 

in meaningful cognitive improvements.  

 

Stimulants enhance various brain functions associated 

with increased attention, wakefulness, activity, self-

confidence, mood/euphoria, and social interaction, 

particularly when used in low doses over a short period. 

This effect occurs primarily because stimulants increase 

dopamine signalling, which plays a central role in these 

functions.  

 

However, the benefits of stimulant medication may not 

be as significant as many pharmaceuticalsponsored 

studies suggest. This is evident in a study by Schein et 

al., which examined ADHD/ADD and the side effects 

of ADHD/ADD medication among adults in the United 

States. Their findings concluded: “Symptoms associated 

with ADHD and treatment-related side effects are 

common and have a significant negative impact on 

quality of life, as well as reducing patients’ likelihood 

of gaining employment” [40].   

 

This is despite the fact that stimulants initially enhance 

concentration, activity levels, endurance, and mood. 

Most studies that highlight such positive effects 

primarily focus on the short-term impact of these drugs.  

Nevertheless, there is no doubt that substances such as 

amphetamine and methylphenidate increase attention, 

activity, wakefulness, endurance, and self-esteem while 

fostering a subjective sense of improved social 

functioning, as demonstrated in a study by Harpin et 

al.41 Individuals who take stimulants like amphetamine 

and methylphenidate tend to overestimate their 

performance. Additionally, research suggests that these 

substances can increase talkativeness42, which may be 

indicative of euphoria and/or a greater sense of ease in 

social situations.  

 

In another study, researchers investigated the acute 

administration of varying doses of methylphenidate (10 

mg, 20 mg, 40 mg, and placebo) on a broad range of 

cognitive functions in healthy young individuals. Their 

findings led to the following conclusion:  

"According to recent literature, stimulants such as 

methylphenidate enhance performance when cognitive 

processes are functioning below an optimal level, which 

was not the case for the participants in the present 

study. We propose that the impression that 

methylphenidate improves cognitive performance in 

healthy young individuals—and thereby justifies its 

use—may be due to enhancements in subjective well-

being induced by the drug. [43].  

 

Ved længere tids påvirkning, så viser undersøgelser at 

brugerne bliver dårligere på en lang række områder, 

som f.eks. hukommelse, fastholdelse af 

opmærksomhed, social opmærksomhed, sociale 

færdigheder, empati m.m. [44-47].  

 

The lack of actual cognitive benefits is further 

supported by evidence showing that individuals who 

use these stimulants struggle to integrate into the 

workforce or achieve a satisfactory social life, despite 

extensive medication with relatively high doses of these 

substances. Furthermore, research indicates that 

stimulant drugs can impair cognitive abilities and 

emotional responses relatively quickly. When taken in 

excessive amounts or at higher doses, these effects can 

escalate to the point of psychosis [48-77].  

 

An increased risk of psychotic disorders and the 

potential development of schizophrenia and psychosis 

have also been linked to long-term stimulant use 

[50,57,78-84].   

 

A study examining vulnerable adolescents and children 

of parents with psychiatric disorders found that 62.5% 

of young individuals who had been treated with 

stimulants exhibited psychotic symptoms, compared to 

27.4% of vulnerable adolescents who had never taken 

stimulants [81].  

 

Individuals who are already predisposed to psychosis 
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face an increased risk of 30–40% of developing 

psychotic symptoms when using stimulants82-83. A 

similar pattern has been observed in individuals 

diagnosed with bipolar disorder, further emphasizing 

the potential risks associated with long-term stimulant 

use85. Man ser da også forandringer i nogle områder af 

hjernen, som kan ligne skizofreni [44].  

 

Overall, it can be concluded that stimulants have a 

significant impact on executive functions, enhancing 

some cognitive processes while impairing others. These 

substances increase attention processes, wakefulness, 

and alertness; however, paradoxically, they also lead to 

poorer learning outcomes.  

 

A research team led by Jurjen van der Schans and 

colleagues from the University of Groningen, 

Netherlands, investigated children who used 

methylphenidate compared to those who had never 

taken the drug. Their study linked data from a pharmacy 

prescription database with standardized test results from 

primary school students in the Netherlands and reached 

the following conclusion:  

 

"Our study shows that children who use 

methylphenidate still perform worse in school 

compared to their peers. Our findings also suggest that 

an earlier initiation of methylphenidate treatment is 

associated with lower academic performance compared 

to children who start treatment later." [31]  

 

A study has shown an improvement in academic skills 

among children with ADHD/ADD who received 

stimulant treatment, compared to those with 

ADHD/ADD who did not receive such treatment. 

However, they never reached the same level as their 

peers without ADHD/ADD. Notably, this study was 

conducted by researchers who received funding from 

the pharmaceutical industry [85].  

 

On the other hand, there is no doubt that stimulants 

enhance self-esteem, attention, and endurance while 

also influencing thinking patterns and emotional states 

in complex ways that are not yet fully understood. 

These substances exhibit seemingly contradictory and 

paradoxical effects—some beneficial, others harmful.   

Further research indicates that stimulants can cause 

significant damage to the brain, leading to cognitive 

decline and stimulant use has been linked to neuronal 

death in dopamine-producing cells, and the risk of 

developing Parkinson’s disease increases by 200–850% 

at a young age [86-91]. Additionally, the risk of 

dementia rises by 400% [92]. This strongly suggests 

that stimulants have a profound effect on cognitive 

function and that excessive or prolonged use can be 

highly detrimental to executive functions.   

 

These various effects may influence how stimulants 

impair cognitive functions over time and may 

contribute to a reduction in learning ability. 

Paradoxically, however, they may also enhance 

concentration, endurance, and self-esteem. Yet, 

stimulants reduce learning ability from the very 

beginning of treatment. The effect that creates the 

paradoxical nature of stimulants from the moment the 

substance is first time consumed will be examined 

further in the following sections. 

 

Neurological Mechanisms Underlying the Paradox 

 

A particularly important study sheds light on why 

stimulants increase concentration, activity levels, 

endurance, and self-esteem, yet simultaneously impair 

critical cognitive processes involved in learning. 

 

In this study by Volkow and colleagues, Positron 

Emission Tomography (PET) scanning was utilized to 

visualize glucose consumption in the brain. PET 

scanning is an advanced neuroimaging technique based 

on measuring radioactive decay from a tracer, allowing 

for detailed imaging of metabolic activity. Tomography, 

in general, refers to any imaging method that produces 

cross-sectional layers of an object using penetrating 

radiation or waves. 
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Statistical Parametric Mapping (SPM) was applied to 

data from various brain imaging techniques, including 

fMRI (functional Magnetic Resonance Imaging), PET, 

and EEG/MEG 

(Electroencephalography/Magnetoencephalography), to 

determine regions with the highest metabolic activity. 

Statistical tests were conducted on each voxel (a three-

dimensional pixel in the brain imaging data) to assess 

whether significant changes in neural activity occurred 

between different conditions, such as a cognitive task 

versus a control state. Brain regions with statistically 

significant differences were then highlighted and 

visualized as color-coded areas on brain maps. 

 

The study found that while methylphenidate increased 

concentration, it did not improve task performance 

compared to individuals who had not taken the drug. 

However, Volkow and colleagues made a surprising 

conclusion: 

 

"Since the brain required approximately 50% less 

glucose to perform the task at the same level, this 

provides evidence that one of the mechanisms behind 

methylphenidate's effect is the ability to focus neural 

activation and make the brain more efficient." [1] 

 

At rest, the brain's relative activity level was the same 

regardless of whether methylphenidate had been 

administered or not. The study shows that when 

performing a task after taking methylphenidate, brain 

activity increased by 11% and 22%, whereas without 

the drug, brain activity increased by 22%. The results of 

task performance remained at a relatively similar level. 

 

Volkow and colleagues speculated that stimulants might 

reduce "neural noise", thereby enhancing cognitive 

efficiency in the adults they studied. However, the 

notion that 50% of the increased neural activity should 

be attributed to "neural noise" seems implausible. 

Instead, a more reasonable interpretation would be that 

stimulants suppress learning-related neural systems, 

rather than merely reducing noise. 

This consideration is only valid if one examines the 

results in isolation. However, when the findings are 

contextualized with the well-documented fact that 

stimulants do not significantly enhance learning, the 

interpretation shifts in a different direction, making the 

results more meaningful. Volkow and colleagues also 

provide a more plausible explanation, suggesting that 

methylphenidate reduces the activity of what is known 

as the "default network" (DN). 

 

The default network (DN) is active during unfocused 

mental states, such as relaxation, reflection, and 

metacognition, and is also associated with daydreaming 

and other internally directed cognitive processes. 

Additionally, DN plays a critical role in long-term 

memory and the integration of new information. 

 

DN can be divided into core regions and two distinct 

subsystems. The core regions include the anterior 

medial prefrontal cortex, posterior cingulate cortex, 

bilateral angular gyrus, lateral temporal lobes, and 

superior frontal gyrus. The dorsomedial subsystem 

consists of the dorsal medial prefrontal cortex, 

temporoparietal junction, lateral temporal cortex, 

temporal pole, and inferior frontal gyrus [93].   

 

Recent studies have shown that brain regions within DN 

remain active during task performance when cognition 

and behavior benefit from memory processes. For 

instance, DN activation is observed when decisions rely 

on previous trial information [94-96], when task-

relevant stimuli are supported by long-term memory 

[97], when participants retrieve task context from 

memory, or when they encode rules upon which their 

actions are based [98]. 

 

Chandra Sripada and colleagues from the University of 

Michigan provide additional insight into why 

methylphenidate enhances attention while 

simultaneously suppressing certain neural systems. 

Their findings, derived from a support vector machine 

analysis, indicate that methylphenidate reduces 
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Discussion 

connectivity between the visual and somatomotor 

networks while also diminishing DN activity during 

task execution. The researchers suggest that this 

suppression may be a key mechanism behind 

methylphenidate's ability to enhance attention during 

cognitive tasks, but it also likely impairs other neural 

systems involved in learning [99]. 

 

 

 

 

 

The results are in good agreement with previous 

research, where no significant improvements in learning 

have been observed, and where these substances may 

even reduce learning ability over time.   

 

Conversely, it is relatively evident that stimulants 

increase wakefulness, concentration, endurance, 

euphoria, and self-esteem. The increased focus and 

attention that arise when taking methylphenidate or 

other stimulants may potentially be explained by an 

effect that suppresses competing networks, allowing 

energy to be utilized more efficiently. Volkow and 

colleagues have suggested that inhibition of the default 

network (DN) could be a contributing factor1, and this 

hypothesis has been pursued by other researchers. 

 

Chandra Sripada and colleagues from the University of 

Michigan provide further insight into why 

methylphenidate enhances attention while 

simultaneously suppressing certain neural systems. 

Their findings, derived from a support vector machine 

analysis, indicate that methylphenidate reduces 

connectivity between the visual and somatomotor 

networks, while also decreasing activity in the default 

network (DN) during task performance. The researchers 

suggest that this suppression may be a key mechanism 

behind methylphenidate’s ability to enhance attention 

during cognitive tasks 93, but it may also likely impair 

other neural systems involved in learning. This aspect 

was not addressed in their study. Consequently, it would 

be pertinent to investigate the various systems that may 

be suppressed by stimulants. 

 

In addition to DN, other networks that warrant further 

investigation include: central executive network (CEN), 

cognitive control network (CCN), dorsal attention 

network (DAN), executive control network (ECN), 

executive network (EN), frontoparietal network (FPN), 

working memory network (WMN), task positive 

network (TPN), ventral attention network (VAN), 

Salience Network, Procedural Memory System (PMS) 

and Declarative Memory System (DMS). 

 

Understanding which neural systems are downregulated 

during stimulant use in learning and problem-solving 

contexts is crucial for both optimizing ADHD/ADD 

treatment strategies and assessing the impact of 

stimulant use among individuals with substance use 

disorders, as the inhibition of these networks may 

contribute to addiction-related mechanisms and other 

mechanisms where one may become overly motivated, 

hyper-focused, and prone to taking excessive risks. 

 

In addition to DN, other networks that warrant further 

investigation include: central executive network (CEN), 

cognitive control network (CCN), dorsal attention 

network (DAN), executive control network (ECN), 

executive network (EN), frontoparietal network (FPN), 

working memory network (WMN), task positive 

network (TPN), ventral attention network (VAN), 

Salience Network, Procedural Memory System (PMS) 

and Declarative Memory System (DMS). 

 

The networks associated with the two small habenular 

nuclei are specific networks that are affected by 

stimulants both directly and indirectly.  

 

The habenular nuclei, a structure in the midbrain, can 

be referred to as our "depression" or "demotivation 

center." Its purpose is to suppress processes related to 

motivation under negative circumstances, in situations 

where the effort of a behavior does not seem to yield a 
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reward that makes it worthwhile, or during states of 

surrender—when nothing can be done.  

 

In the midbrain, or diencephalon, lies the epithalamus. 

The epithalamus constitutes a small part of the 

diencephalon and consists of three smaller structures: 

the pineal gland, the habenular nuclei, and the stria 

medullaris thalami, along with the third ventricle. Most 

of the epithalamus is located near the caudal and dorsal 

parts of the thalamus. It is believed that the habenula 

has evolved in close interaction with the pineal gland 

[100-101]. The stria medullaris receives and transmits 

input to the habenular nuclei, while the fasciculus 

retroflexus serves as the output pathway from the 

habenular nuclei, consisting of axons from the habenula 

[102].   

 

This larger complex plays a central role in our 

experience of demotivation, reduced energy, sadness, 

heaviness, and surrender. On the other hand, it is also 

associated with fatigue and sleep, where the pineal 

gland is the dominant structure, while the habenula is 

central to the experience of demotivation, surrender, 

giving up. 

 

The habenular nuclei consist of two nuclei [103]: the 

lateral habenular nuclei and the medial habenular 

nuclei. The lateral habenular nuclei receive input from 

the basal ganglia, limbic areas, and cognitive regions, 

encompassing motor, emotional [104-107], and 

cognitive input [108]. 

 

The habenular nuclei are involved in learning and 

memory related to unpleasant experiences, which serve 

to demotivate us [104,109]. This structure is also 

activated during decision-making under negative 

influences and stress [110]. Additionally, the habenula 

is highly active when we make mistakes and process 

those errors104. Damage to the habenula impacts 

cognitive processes and has consequences for learning, 

memory, and attention abilities [104, 111]. Furthermore, 

damage to the habenula also leads to sleep disturbances 

[112]. 

 

When the habenula is activated, it suppresses the 

monoamine systems, including dopamine, 

norepinephrine, serotonin, and histamine [113-117]. 

This suppression lowers motivation and increases 

uncertainty, and strong activation results in fatigue, 

heaviness, and a sense of surrender. This system is 

crucial for evaluating ambiguous, uncertain, and 

potentially dangerous situations. It is also essential for 

assessing what is worthwhile or wise to pursue. The 

habenula plays a significant role in reflection related to 

uncertainty, ambiguity, self-assessment, and other 

metacognitive processes. 

 

These processes are particularly important in situations 

that are ambiguous or in other situations where we need 

to experience uncertainty. It is likely that the increased 

release of monoamines in the brain when stimulants are 

used counteracts the impact of the habenula on 

conscious processes. This, in turn, may enhance 

motivation, energy levels, and self-confidence, thereby 

reducing uncertainty and doubt, but it can also have a 

negative effect on learning. 

 

Most individuals who take stimulants report thinking 

less, having fewer distracting thoughts, being more 

focused, feeling less uncertain, and having greater 

confidence in their decisions. These effects are likely 

due to the habenula's inability to suppress the 

monoamine systems when the structure is stimulated. 

However, this does not explain the findings of Volkow 

and colleagues, who observed a 50% reduction in 

glucose consumption. Therefore, it is highly likely that 

other systems are also being suppressed.   

 

Stimulants also have a direct impact on neurons in the 

habenula. It has been demonstrated that continuously 

administered amphetamine has a neurotoxic effect on 

dopamine terminals in the caudate and that both 

amphetamine and cocaine, when administered 

continuously over a period of 3–5 days, induced a 



 Martin Legind Von Bergen, J Neurol Psychol Res (2025), 6:1 

P a g e  | 10 

 

J Neurol Psychol Res, an open access Journal  Volume 6 • Issue 1 • 2025 

Conclusion   

References 

highly specific pattern of axonal degeneration extending 

from the lateral habenular nucleus along the fasciculus 

retroflexus toward the ventral tegmental area [118]. 

 

The effect of chronic amphetamine administration is 

also observed in relation to the expression of the D2 

dopamine receptor, which was immunohistochemically 

analyzed in the caudate-putamen and the lateral 

habenular nucleus. A significant reduction in the 

number of immunopositive neural cells was observed in 

both regions, suggesting that chronically administered 

amphetamine alters the function of the D2 dopamine 

receptor in the dorsal diencephalic conduction system. 

This may be involved in the development of 

schizophrenia, stereotypic behavior, and neurological 

disorders in individuals who consume psychostimulants 

on a daily basis [119]. 

 

White matter is also reduced in the connections between 

the habenula and the prefrontal cortex [120], which is 

highly significant for the functional capacity of 

individuals who continuously use stimulants.  

 

These direct effects can have profound consequences 

for human learning ability and may result in lasting 

damage, as well as maladaptive behaviour, where the 

ability to reconsider one's thoughts is impaired.  

 

  

 

 

The paradoxical effects of ADHD/ADD medication 

raise significant questions about their role in cognitive 

enhancement and learning. While these drugs increase 

alertness, endurance, and selfesteem, they appear to 

impair essential cognitive processes necessary for 

academic and intellectual development. Neuroimaging 

studies suggest that reduced metabolic activity and 

disrupted functional connectivity in key learning 

networks may underlie the lack of learning 

improvements and enhancement of academic skills.  

 

The reduction in the impact of the habenular nuclei on 

monoamine systems may potentially affect certain 

forms of learning, preventing them from functioning 

properly when stimulants are used. However, it is likely 

that the lack of learning should also be associated with 

other systems in the brain.  

 

Future research should further investigate how 

stimulants affect brain function and their long-term 

consequences on cognitive development, as they seem 

to increase the risk of impaired executive functions, 

psychosis, and other neurological disorders—especially 

in individuals dependent on these medications, but also 

in those who receive them by prescription over 

extended periods. The use of stimulants as a treatment 

should be approached with a high degree of restriction 

and caution.  
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